martes, 5 de junio de 2012

Número real

 
 
En matemáticas, los números reales (designados por R) incluyen tanto a los números racionales (positivos y negativos y el cero) como a los números irracionales (trascendentes, algebraicos), que no se pueden expresar de manera fraccionaria y tienen infinitas cifras decimales no periódicas, tales como: \sqrt{2}, \pi.

 

Números irracionales

Un número irracional es un número que no se puede escribir en fracción - el decimal sigue para siempre sin repetirse.
Ejemplo: Pi es un número irracional. El valor de Pi es
3.1415926535897932384626433832795 (y más...)
Los decimales no siguen ningún patrón, y no se puede escribir ninguna fracción que tenga el valor Pi.
Números como 22/7 = 3.1428571428571... se acercan pero no son correctos.


Números irracionales famosos

Pi es un número irracional famoso. Se han calculado más de un millón de cifras decimales y sigue sin repetirse. Los primeros son estos:
3.1415926535897932384626433832795 (y sigue...)
eEl número e (el número de Euler) es otro número irracional famoso. Se han calculado muchas cifras decimales de e sin encontrar ningún patrón. Los primeros decimales son:
2.7182818284590452353602874713527 (y sigue...)
phiLa razón de oro es un número irracional. Sus primeros dígitos son:
1.61803398874989484820... (y más...)
síbolo radicalMuchas raíces cuadradas, cúbicas, etc. también son irracionales. Ejemplos:
√31.7320508075688772935274463415059 (etc)
√999.9498743710661995473447982100121 (etc)

Pero √4 = 2, y √9 = 3, así que no todas las raíces son irracionales.



Función inyectiva

 
Ejemplo de función inyectiva.
En matemáticas, una función f \colon X \to Y \, es inyectiva si a cada valor del conjunto X\, (dominio) le corresponde un valor distinto en el conjunto Y\, (imagen) de f\,. Es decir, a cada elemento del conjunto Y le corresponde un solo valor de X tal que, en el conjunto X no puede haber dos o más elementos que tengan la misma imagen.
Así, por ejemplo, la función de números reales f:\mathbb{R}\to\mathbb{R}, dada por f(x)=x^2\, no es inyectiva, puesto que el valor 4 puede obtenerse como f(2) y f(-2). Pero si el dominio se restringe a los números positivos, obteniendo así una nueva función g:\mathbb{R}^+\to\mathbb{R}^+ entonces sí se obtiene una función inyectiva.

Función biyectiva

 
Ejemplo de función biyectiva.
En matemática, una función f \colon X \to Y \, es biyectiva si es al mismo tiempo inyectiva y sobreyectiva; es decir, si todos los elementos del conjunto de salida tienen una imagen distinta en el conjunto de llegada, y a cada elemento del conjunto de llegada le corresponde un elemento del conjunto de salida.
Formalmente,
\forall y\in Y : \exists !\ x\in X,\ f(x) = y
Una implicación directa de lo anterior, es que en una función biyectiva la cardinalidad del conjunto de salida o dominio, y el de llegada o codominio, son iguales. Esto también se puede ver en el ejemplo, donde |X|=|Y|=4.

Funciones de variable real

Visualización de los parámetros utilizados en la definición de límite.
Si la función f tiene límite L en c podemos decir de manera informal que la función f tiende hacia el límite L cerca de c si se puede hacer que f(x) esté tan cerca como queramos de L haciendo que x esté suficientemente cerca de c siendo xdistinto de c.
Los conceptos cerca y suficientemente cerca son matemáticamente poco precisos. Por esta razón, se da una definición formal de límite que precisa estos conceptos. Entonces se dice:
El límite de una función f(x), cuando x tiende a c esL si y sólo si para todo  \varepsilon > 0 \;  existe un  \delta > 0 \; tal que para todo número real x en el dominio de la función 0 < |x-c| < \delta \Rightarrow |f(x)-L| < \varepsilon.
Esto, escrito en notación formal:

   \begin{array}{l}
   \underset {x\to c}{\lim}  \, \,f(x) = L \iff \forall \varepsilon > 0 \ \ \exists \delta > 0 / \forall x \in \operatorname{Dom}(f), 0<|x-c|<\delta \longrightarrow |f(x)-L|<\epsilon
   \end{array}
Lo importante es comprender que el formalismo no lo hacen los símbolos matemáticos, sino, la precisión con la que queda definido el concepto de límite. Esta notación es tremendamente poderosa, pues, nos dice que si el límite existe, entonces se puede estar tan cerca de él como se desee. Si no se logra estar lo suficientemente cerca, entonces la elección del δ no era adecuada. La definición asegura que si el límite existe, entonces es posible encontrar tal δ.
No obstante, hay casos como por ejemplo la función de Dirichlet D:\mathbb{R}\to\mathbb{R} definida como:

D(x) = \begin{cases}
c & \mathrm{para \ } x \ \mathrm{racional} \\
d & \mathrm{para \ } x \ \mathrm{irracional} \\
\end{cases}
donde no existe un número c para el cual exista \lim_{x \to c}f(x)\quad. Por lo tanto, para demostrar la anterior afirmación es necesario hacer uso del hecho de que cada intervalo contiene tanto números racionales como irracionales.


calculo diferencial


          

           LIMITES


QUE SON LOS LÍMITES
En matemáticas, el límite es un concepto que describe la tendencia de una secuencia o una función a medida que los parámetros de esa sucesión o función sea acerca a determinado valor  en cálculo especialmente en un análisis real matemática mente  este concepto  son fundamentales  convergencia  con continuad, derivación, integración, entre otros.
PROPIEDADES DE LOS LÍMITES
Si C es una constante el límite. El limite de C cuando X tiende a 2.
 Si C es una constante y F es una fusión el limite del producto de una función  cuando X tiende al valor A= al producto de  la constante  por el limite de una función.

 

Límite de una sucesión
La sucesión para converge al valor 0, como se puede ver en la ilustración.
Artículo principal: Límite de una sucesión.
La definición de límite matemático para el caso de una sucesión nos indica intuitivamente que los términos de la sucesión se aproximan arbitrariamente a un único número o punto, si existe, para valores grandes de . Esta definición es muy parecida a la definición del límite de una función cuando tiende a .
Formalmente, se dice que la sucesión tiende hasta su límite , o que converge o es convergente (a ), y se denota como:

Límite de una función


Visualización de los parámetros utilizados en la definición de límite.
Artículo principal: Límite de una función.
En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.
Límite de una sucesión de conjuntos
Artículo principal: Límite (sucesión de conjuntos).
En teoría de conjuntos también se utiliza el concepto de límite, que se puede calcular sobre una sucesión de conjuntos.